Geometry	
Notes - Special Segments in Triangles	í

NameKEY		
•	Date	

There are four special segments that we can draw and use in any type of triangle. Here is a description and we will draw pictures of each:

Chariel Comment	No acquistion	D: January
Special Segment	<u>Description</u>	<u>Picture</u>
Perpendicular Bisector	Goes through the <i>midpoint</i> of a side, and is <i>perpendicular</i> to the side. (does <i>not</i> have to go through the opposite vertex)	Draw the perpendicular bisector of side AB.
Median	Goes through the <i>midpoint</i> of a side and connects to the opposite <i>vertex</i>	Draw the median of side AB.
Altitude	Must be <i>perpendicular</i> to a side, <i>and</i> go through the opposite vertex	Draw the altitude to side AB.
Angle Bisector	Goes through a <i>vertex</i> of a triangle, cutting that angle in half	Draw the angle bisector of $\angle C$.

Draw each of the following figures.

1. Draw the median to side AC.

3. Draw the angle bisector of $\angle S$ and the altitude to side HA. (put a "b" by the bisector of $\angle S$ and an "a" by the altitude)

2. Draw the perpendicular bisector of side RU.

4. Draw the altitude to side BR *and* the perpendicular bisector of side BR. (put an "a" by the altitude and a "p" by the perpendicular bisector)

Solve for x and then plug it in to find the measure of each indicated side. Beware of extra information!

1. Find AB if BD is a median in $\triangle ABC$.

 $x = \frac{20}{AB} = \frac{13}{13}$

2. Find AC if AD is an altitude of DABC.

$$4 \times = 80$$
$$\times = 20$$