## Geometry Notes - Arc Length and Areas of Sectors and Segments of Circles

 $\frac{m}{360}$  C) where m is the measure of the central angle and C is the circumference.

Area of sector

where m is the measure of the central angle and r is the radius of the circle.

Example 1: Given:  $\square$  P and  $m \angle APC = 120^{\circ}$ 



a. Find the length of ABC

Arc length 
$$\frac{3}{5}\frac{120}{360}\pi(8)$$

Arc length = 
$$\frac{1}{3}(8\pi)$$

Arc length = 
$$\frac{8\pi}{3}$$
 units

Given: QP and m \( APC = 120^\circle



b. Find the area of the shaded sector.

$$A_{\text{sector}} \frac{1}{3} \frac{120}{360} \pi r^2$$

$$A_{\text{sector}} = \frac{1}{3}\pi 4^2$$

$$A_{\text{sector}} = \frac{16\pi}{3} \text{ units}^2$$

Example 2:

Note: Sector of Circle - Triangle = Segment of Circle

Circle

Given: B P and m \( APB = 60^\circle



$$\frac{60}{360}$$
  $\pi$   $6^2$ 



$$\frac{6^{2}\sqrt{3}}{4} = 9\sqrt{3}$$



$$6\pi - 9\sqrt{3}$$
 units<sup>2</sup>

 $\frac{6^{2}\sqrt{3}}{4} = 9\sqrt{3} =$   $\frac{2\sqrt{3}}{4} \leftarrow A(isoscutes \Delta)$