Notes for 10-2

Area of Quadrilateral ABCD with Perpendicular Diagonals

Area of Quadrilateral ABCD = Area of \triangle ABC + Area of \triangle ADC

Area of Quadrilateral ABCD =
$$\frac{1}{2}$$
(20)(12) + $\frac{1}{2}$ (20)(5) =

120 + 50 = 170 square units

or

Area of Quadrilateral ABCD =
$$\frac{1}{2}$$
(20)(12 + 5) =

$$\frac{1}{2}$$
(20)(17) = 170 square units

Area of Quadrilateral ABCD = $\frac{1}{2}$ (AC)(BD)

Area of Quadrilateral ABCD = $\frac{1}{2}$ (the product of the diagonals)

Area of a Quadrilateral with Perpendicular Diagonals = $\frac{1}{2}$ d₁d₂

What special quadrilaterals have perpendicular diagonals?

Area_{rhombus} =
$$\frac{1}{2}$$
d₁d₂ Area_{kite} = $\frac{1}{2}$ d₁d₂ Area_{square} = $\frac{1}{2}$ d² (Diagonals of a square are \cong)

Area of Trapezoid RSTU

Copy trapezoid RSTU and call it R'S'T'U'.
Rotate the copy around the midpoint of segment ST. The resulting figure is a parallelogram RU'R'U. The original trapezoid RSTU is half of that parallelogram.

$$A_{\text{trapezoid}} = \frac{1}{2} (h) (RS + TU)$$

$$A_{\text{trapezoid}} = \frac{1}{2}(h)(b_1 + b_2)$$
 where h is height and b_1 and b_2 are the bases

or

Construct \overline{MN} , the median of trapezoid RSTU. Drop perpendiculars from M and N to base \overline{UT} . Rotate the small triangles that are formed around the midpoints, M and N. A rectangle with length MN is formed.

 $A_{trapezoid} = (median)(height)$

Area of Equilateral Triangle

Equilateral triangle with sides of 10 cm. each -

Atriangle =
$$\frac{1}{2}$$
bh
= $\frac{1}{2}$ (10)($5\sqrt{3}$)
= $25\sqrt{3}$

In general -

$$A_{equilateral \Delta} = \frac{x^2 \sqrt{3}}{4}$$
 where x is side of Δ

Example 1

Find the height of a trapezoid that has an area of 287 square inches and bases of 38 inches and 44 inches.

$$A_{\text{trapezoid}} = \frac{1}{2} h(b_1 + b_2)$$

$$287 = \frac{1}{2} h(38 + 44)$$

$$574 = h(82)$$

$$574/82 = h$$

$$7 = h$$

Example 2

Find the height of a trapezoid that has an area of 84 cm² if its median is 12 cm.

Example 3

Sonja wants to place a decorative brick edging around a flower garden that is in the shape of a rhombus. One diagonal is 30 feet long, and the area is 600 square feet. How many bricks must she purchase if each brick is one foot long?

Example 4

Find the area of an equilateral triangle with perimeter 60 cm.

Side is
$$60/3 = 20$$

Area is
$$\frac{20^2\sqrt{3}}{4} = \frac{400\sqrt{3}}{4} = 100\sqrt{3} \text{ cm}^2$$
.