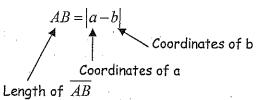
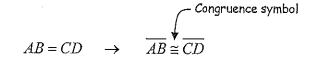
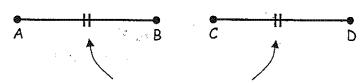

			C		D	
57	3	4	56	78	9	TO S

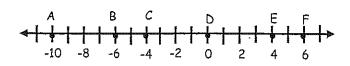


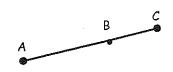
The distance between points \mathcal{C} and \mathcal{D} on the ruler is 3. You can use the Ruler Postulate to find the distance between points on a number line.

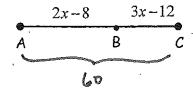

Ruler Postulate:

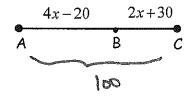

The distance between any two points is the absolute value of the differences of the corresponding numbers.

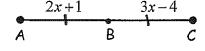
$$CD = |3 - 7| = |-4|$$


$$CD = 4$$

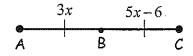

Matching marks therefore congruent


Comparing Segment Lengths:




$$AB = |-10 + (+6)| = |-4| = 4$$

 $CD = |-4 - 0| = |-4| = 4$
 $AB = CD$ so $\overline{AB} \cong \overline{CD}$


Compare CD and DE, are the segments congruent?

Segment Addition Postulate:

If three points, A, B, and C are collinear and B is between A and C then AB+BC=AC

If AC=60, find the value of x, then find AB and BC.

If AC=100, find the value of x, then find AB and BC.

$$4x-20+2x+30=100$$
 $6x+10=100$
 $-10=-10$
 $4x=90$
 $x=15$

Midpoint:

The midpoint of a segment is a point that divides the segment into two congruent segments. A midpoint, or any line, ray or other segment through a midpoint, is said to *bisect* the segment.

B is the midpoint of \overline{AC} . Find AB,BC, and AC.

$$A8 = 8C$$
 $2x+1 = 3x-4$
 $-2x - 2x$
 $1 = 1x-4$
 $+4 + 4$
 $5 = x$

Find x, then AB, BC, and AC.