GEOMETRY ≅∆s Worksheet I

NAME KEY	
Date	Period

Given a reason (SSS, SAS, ASA, or AAS) that shows the triangles congruent. If none works, write none.

(1) SAS	2) ASA (3) SAS, ASA_
(4) ASA	<u>3 55.5</u>	6. none
D_SAS	(8) none	9_555
10. none	11. 5>5	12. <u>ASA</u>
13. <u>ASA</u>	14. <u>none</u>	15. <u>SA5</u>

 $\begin{array}{ccc}
\hline{16.} & \overline{DE} \equiv \overline{EC} \text{ and } \overline{BE} \equiv \overline{AE}. \\
& \Delta DEB \cong \underline{CEA} \text{ by } \underline{SAS}
\end{array}$

The is the midpoint of \overline{KW} , $\angle KEG = \angle WEH$ and $\angle K = \angle W$. $\triangle KEG = \triangle W = \triangle W$ by $\triangle SA$.

18. $\angle TVU \equiv \angle WUV$ and $\overline{VT} \equiv \overline{UW}$. $\Delta TUV \equiv \Delta VVV$ by SAS.

19. D is the midpoint of \overline{MT} , $\angle MDB$ and $\angle T$ are right angles, and $\overline{BD} \equiv \overline{ZT}$. $\Delta MDB \equiv \Delta DTZ$ by SAS.

20. $\overline{JN} \equiv \overline{MN}$ and $\overline{JK} \equiv \overline{MK}$. $\Delta JNK \equiv \bigcap M N \searrow by SSS$.

21. $\overline{FP} \equiv \overline{HP}$ and $\angle F \equiv \angle H$. $\Delta PFS \equiv \underline{DPHQ}$ by \underline{ASQ} . \underline{P}

22. \overline{AD} is the angle bisector of $\angle BAC$ and $\overline{BA} \equiv \overline{CA}$. $\triangle BAD \equiv \triangle CAD$ by $\angle SAS$.

23. U is the midpoint of both \overline{YX} and \overline{WV} , and $\overline{WY} \equiv \overline{VX}$. $\Delta WUY \equiv \triangle VUX$ by SAS DR

We want to know if $\triangle QPR \cong \triangle MNK$

- Á
- 24. We know $\overline{QP} \cong \overline{MN}$. What else must we know to use ASA? ∠ $\overline{Q} \cong \angle M$; $\angle P \cong \angle N$
- 25. We know $\angle R \cong \angle K$. What else must we know to use SAS? $\bigcirc R \cong K \cap K$

6.

LF+LR=180 OR LI+ LF = 180

Write Δ congruence (if possible) and tell which postulate (SSS, SAS, ASA, or AAS) you are using. 2. ∆ABC≅∆ DEC by A SA 1. ΔGKM≅Δ LMK by SAS 7 K $\angle B \cong \angle E$ $\overline{GK} \parallel \overline{ML}$ C is midpoint of \overline{BE} GK≅ML ∠DCB≅∠ECA M by NONE 4. ΔKLG≅Δ_ TRS 3. ΔPRQ≅Δ GL bisects KM R is midpoint of GL bisects ∠KGM both PT and QS AAS 6. ADAB≅A BCO by 5. ΔRNG≅Δ ENA AB | DC $RN \cong NE$ $\angle A \cong \angle C$ $\angle R \cong \angle E$ 8. ΔCON≅Δ CGN by 555 AIAS MASA 7. ∆WIT≅∆ CHT by: CO ≅ GC T is midpt. of HI ON ≅ NG WI || HC by 555 n SAS 10. ATES ≅A AE X 9. ΔGEO≅Δ_**GmO**_by E is midpoint of both OG bisects ∠EOM TA and SX EO ≅ MO $TS \cong AX$ M

