Cornell	Matag
Comen	NOUCS

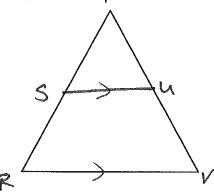
Name: KEY

Date: _____

Main Ideas/Questions

Title of Notes: 7-5 Proportions in Triangles and Parallel Lines

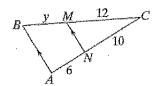
Side-Splitter Theorem:

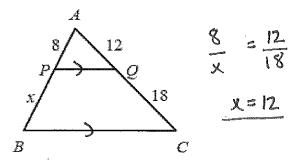

If a line is parallel to one side of a triangle and intersects the other two sides then it divides those sides proportionally.

Ex. 1^{st} label the triangles RTV 2^{nd} draw SU // RV

Complete the proportional parts

$$\frac{RS}{ST} = \frac{UV}{UT}$$
 $\frac{RS}{UV} = \frac{ST}{UT}$


10


Practice Problems

 $oldsymbol{0}$ Using the Side-Splitter Theorem Find y.

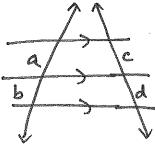
$$\frac{CM}{MB} = \frac{CN}{NA}$$
 Side-Spitter Theorem
$$\frac{12}{y} = \frac{10}{6}$$
 Substitute.
$$y = \frac{12}{7.2}$$
 Cross-Product Property
$$y = \frac{12}{7.2}$$
 Solve for y.

2. Use the Side-Splitter Theorem to find x given that $\overline{PO} || \overline{BC}$.

Cornell Notes

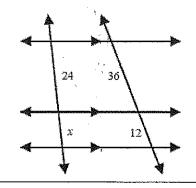
Name:

Date: _____

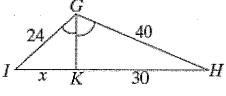

Main Ideas/Questions

Title of Notes: Cont'd

Corollary to Side-Splitter Theorem: If three parallel lines intersect two transversal, then the segments intercepted on the transversal are


proportional.
$$\frac{a}{b} = \frac{c}{d}$$

EX. Draw three lines parallel intersected by two transversal. Label the interior segments a, b, c, and d, so $\frac{a}{b} = \frac{c}{d}$


Practice Problem

1. Solve for x.

Triangle-Angle-Bisector Theorem:

If a ray bisects an angle of a triangle, then it divides the opposite side into two segments that are proportional to the other two side of a triangle.

$$\frac{GI}{GH} = \frac{IK}{KH}$$

Solve for x