Area of Equilateral Triangle

Equilateral triangle with sides of 10 cm. each -

Atriangle =
$$\frac{1}{2}$$
bh

In general -

A<sub>equilateral
$$\Delta$$</sub> = $\frac{x^2\sqrt{3}}{4}$ where x is side of Δ

Example 1

Find the height of a trapezoid that has an area of 287 square inches and bases of 38 inches and 44 inches.

$$A_{\text{trapezoid}} = \frac{1}{2} h(b_1 + b_2)$$

Example 2

Find the height of a trapezoid that has an area of 84 cm² if its median is 12 cm.

$$A_{trapezoid} = (median)(height)$$

Example 3

Sonja wants to place a decorative brick edging around a flower garden that is in the shape of a rhombus. One diagonal is 30 feet long, and the area is 600 square feet. How many bricks must she purchase if each brick is one foot long?

Arearhombus =
$$\frac{1}{2} d_1 d_2$$
.

Example 4

Find the area of an equilateral triangle with perimeter 60 cm.

Notes for 10-2

Area of Quadrilateral ABCD with Perpendicular Diagonals

Area of Quadrilateral ABCD = Area of \triangle ABC + Area of \triangle ADC Area of Quadrilateral ABCD =

or

Area of Quadrilateral ABCD =

Area of a Quadrilateral with Perpendicular Diagonals =
$$\frac{1}{2}$$
d₁d₂

What special quadrilaterals have perpendicular diagonals?

Area _{rhombus} = $\frac{1}{2}$ d ₁ d ₂ Area _{kite} = $\frac{1}{2}$ d ₁ d ₂ Area _{square} = $\frac{1}{2}$ d ² (Diagonals of a s
--

Area of Trapezoid RSTU

Copy trapezoid RSTU and call it R'S'T'U'.

Rotate the copy around the midpoint of segment ST. The resulting figure is a parallelogram RU'R'U. The original trapezoid RSTU is half of that parallelogram.

$$A_{\text{trapezoid}} = \frac{1}{2} (h) (RS + TU)$$

$$A_{\text{trapezoid}} = \frac{1}{2}(h)(b_1 + b_2)$$
 where h is height and b_1 and b_2 are the bases

or

Construct \overline{MN} , the median of trapezoid RSTU. Drop perpendiculars from M and N to base \overline{UT} . Rotate the small triangles that are formed around the midpoints, M and N. A rectangle with length MN is formed.

$$A_{\text{trapezoid}} = (\text{median})(\text{height})$$