Geometry Notes 1-1 Patterns and Inductive Reasoning

Name_	KEY	·
Date_		Period

Inductive Reasoning:

Inductive reasoning is reasoning that is based on patterns you observe.

If you observe a pattern in a sequence you can use inductive reasoning to tell what the next term in the sequence will be.

What is the next pattern?

Draw the next pattern in the sequence:

What are the next two terms?

3, 6, 12, 24,

Write the next two terms in the sequence:

48,96

A Conjecture

Is a conclusion you reach using inductive reasoning (reasoning based on a pattern you observe.)

Example:

Make a conjecture about the sum of the first 30 odd numbers.

 $= 1 = 1^2$ $= 4 = 2^2$ 1 + 3 $1+3+5 = 9 = 3^2$ $1+3+5+7 = 16 = 4^2$ $1+3+5+7+9=25=5^2$

Using inductive reasoning you can conclude that the sum of the first 30 odd numbers is 30^2 , or 900.

A Counter Example

Not all conjectures turn out to be true. You can prove a conjecture false by finding one counter example.

A counter example to a conjecture is an example for which the conjecture is incorrect.

2 = 49

Conjecture: The square of any number is greater than the original number.

Counter Example: $1^2 \geqslant 1$

Conjecture: Any three points can be connected to form a triangle.

Counter Example: If the three points are collinear they will not form a triangle.

You Try!

Find the next two terms:

- 1. 5, 10, 20, 40, 30, 160
- 2. 1, -1, 2, -2, 3, 3, 4

4. Develop an algebraic expression which can be used to find how many square units will be in the n th figure if the pattern continues.

Figure 1

n=1

Figure 2

Figure 3

Figure 4

STAT FDIT -entind values 2nd Quit STAT - CALC